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ABSTRACT

An analytic solution is obtained for the acoustic pressure statistics in a closed rectangular shaped cavity
behind a simply supported, rectangular plate excited by boundary layer turbulence. The coatribution of the
cavity scoustic pressure is neglected as contributing tc the plate excitation, leaving only the turbulent pres-
sure fluctuations as the exciting force, The mathematical model for the turbulent pressure statistics is based
on that of Corcos, which agrees well with experiment, A byproduct of this analysis is an analytic solution for
the turbulent flow excited plate vibration velocity statistics, The plate velocity and cavity acoustic pressure
statistics are expremed in the form of cross power spectral densities and power spectral densities, Dimensjon-
less forms of the plate velocity spectral density and cavity acoustic pressure spectral density are developed,

The dimensionlem plate velocity spectral density and dimensionless cavity acoustic pressure spectral den-
sity were computed, by means of a digital computer, for selected values of dimensionless input parameters,
From these computed dimensionless spectra, the effects of major parameters on the plate velocity spectral
deasity and the cavity acoustic pressure spectral density were determined,

A “peak spertrum,” constructed by connecting the major spectral peaks in the plate velocity or cavity
acoustic pressurc wectra, proved to be a useful engineering concept, Knowledge of the “peak spectrum” is
equivalent to knowledge of the maximum plate velocity or cavity acoustic presure spectral levels for a par-
ticular set of input parameters, Based on the computed dimeasionless spoctra, mathematical exprestions are
derived for the dimensionlcs plate velocity “peak spectral density” and che cavity acoustic presure “peak
spectral density" over a limitedrange of dimensionles frequency, The computed simply supported plate veloc-
ity "peak spectrum” compares well with the plate velocity “peak spectrura” constructed from experimental
measurements on a fixed edge plate above the firm plate nstural frequency, No experimental data exists for
the cavity acoustic pressure,

Comparisoa of the computed dimensionless cavity acoustic pressure spectal density at the plate and the
dimensionless turbulent pressure spectral density allowed formulation of criteria under which the cavity scous-
tic presure wasnegligible compared to the turbulent presure, As this analysis assumed the cavity acoustic
premute to be negligible compared to the turbulent presure, the aforementioned criteria are, in effect, limits
of applicability of this analysis,
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Plate and acoustic cavity dimensjor in x-coordinate
(longitudinal) direction

Plate and acoustic cavity dimension in y-coordinate
(1ateral) direction

Dimensionless plate and acoustic cavity dimension

defined in equation (4. 129)

Speed of sound in acoustic medium

Dimensionless speed of sound defined in equation (4. 140)
Acoustic cavity dimension in z-coordinate (depth) direction
Decibel [10 log, , ®(w)]

Dimensionless cavity dimension defined in equation (4.140)
Defined by equation (4.110)

Defined by equation (4.113)

Plate displacement response to a unit impulsive force
Square root of minus one

Acoustic wave number defined in equation (4, 78)

Acoustic wave number in the x-coordinate direction
Acoustic wave number in the y-coordinate direction

Acoustic wave number in the z-coordinate direction
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P,

Dimensionless acoustic wave number in the z-coordinate
direction

Turbulent boundary layer wall pressure

Cavity acoustic pressure

Effective plate damping coefficient per unit area
Critical plate damping coefficient for the m-ns mode
Dimensionless plate damping coefficient defined in
equation (4.129)

Dimensionless critical plate damping coefficient for the
m-nsb mode

Time coordinate

Time at which impulsive force occurs

Acoustic phase velocity vector

Acoustic phase velocity in the x-coordinate direction
Acoustic phase velocity in the y-coordinate direction
Acoustic phage velocity in the z-coordinate direction
Plate displacement in the z-coordinate direction
Longitudinal spacial coordinate

Dimensionless longitudinal spacial coordinate defined by
equation (4. 130)

Lateral spacial coordinate

Dimensionless lateral spacial coordinate defined by

equation (4. 130)
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I
INTRODUCTION

Flow induced noise is largely responsible for limiting submarine and
surface ship sonar performance, producing objectionable noise levels inside
high speed aircraft, and producing relatively high vibration levels in the pro-
pulsion systems of modern spacecraft which increase the probability of
failure of system components. Because of this wide variety of problems,
theoretical and experimental research in flow noise and flow induced noise has
increased in the past decade. The research in flow noise has been aimed at
defining a statistical model for the turbulent boundary layer pressure and/or
velocity which provides the excitation to the mechanical system, The research
in flow induced noise has been primarily aimed at theoretical solutions for the
response characteristics of various systems using mathematically tractable
approximations to the turbulent boundary layer excitation. Certain experimen-
tal studies of flow induced noise in simple systems have also been performed.

To date, although there is general agreement in the measurements of
boundary layer pressure s'atistics, there is not complete agreement as to the
mathematical model of these statistics. Also, although a wide variety of elc-
mentary flow induced noise problems have been studied, few have used any of
the existing;, experimentally based, mathematical models for the boundary

layer excitation,




T

It is the purpose of this study to add to the understanding of flow induced
noise by investigating the effects of major parameters on the sound field pro-
duced in a closed space behind a simply supported plate excited by boundary
layer turbulence utilizing an existing, experimentally based mathematical

model of the turbulent wall pressure.



Il
OBJECTIVES

The objective of this study is to provide the submarine sonar systems
designer with information concerning: (1) the acoustic environment of sonar
transducers; and (2) the major parameters which may affect this c¢nvironment,

The above objective has been attacked by means of an analytical study of
the acoustic field in a closed space behind a simply supported, rectangular,
flat plate which is excited by turbulent boundary layer pressure fluctuations,
The closed space is bounded by five rigid walls and the flexible plate. A
sketch of the model used in this analysis is shown in Figure 1. This model
provides a fair representation of the acoustic environment of sonar trans-

ducers in submarines,




I11
TECHNICAL APPROACH

3.1 Technical Background

The purpose of this section is twoiold, First, it summarizes work in the
field of flow and flow induced noise, Secondly, it provides justification for

certain assumptions made in the analysis to follow,

3.1.1 Theoretical Studies in Flow Induced Noise

Early theoretical studies in the field of flow induced noise were directed
toward a prediction of noise in aircraft fuselages [1, 2]. The mathematical
models of the turbulent boundary layer in these studies were not based on
experimental evidence, During this same period, Lyon [3] studied the re-
sponse of strings to random excitation, Eringen [4] derived expressions for
the response of beams and plates to random pressure fields, and Kraichnan [5]
studied the free radiation of sound from turbulent excitation of a series of thin,
stiff flat plates. Again, the excitation, although characteristic of boundary
layer turbulence in certain respects, was not compatible with experimental
data,

Dyver [G] was one of the first to study the coupled plate vibration-acoustic
radiation 1 rui.'lem, He assumed the boundary layer pressure correlation func-

tion to bhe un» product of a convected spacial delta function, a fixed spacial



(5]

delta function, an amplitude, and a decaying function of time. Although the
delta functions were relatively poor approximations to the actual longitudinal
and lateral pressure correlations, the convection and time decay were phe-
nomena which agreed with experiments, The above excitation was used in a
normal mode approach to the prediction of the acoustic field in a closed space
behind a simply supported, flow excited, flat plate., The walls enclosing the
space were pressure release surfaces, Although Dyer's input was,not precise,
it provided insight into the behavior of the model considered and encouraged
further work utilizing normal mode theory,

A short time layer, Dyer [7] used the same model of the turbulent pres-
sure correlation to calculate the displacement correlation function of a turbu-
lence excited flat plate. About this same time, Strasberg [8] used a mathe-
matical model of the turbulent pressure correlation based on the data of
Harrison [9] to predict the displacement spectral density of plates and mem-
brances. This was one of the first cases where experimentally based inputs
were used.

Powell [10] investigated the fatigue of structures excited by random pres-
sure fields and indicated that the response cross spectral density is maximized
when the incident pressure correlation matches the modal wavelength, Al-
though this is a possible condition in spacecraft hoccause of their high speeds,
it is not likely to occur in submarines,

Maidanik and Lyon [1 1] studied the response of strings to moving noise
fields using the Dyer delta function model for the pressure correlation,

From 1960 to the present, an extensive research program in flow noise
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and flow induced noise has been conducted at the University of Southampton,
This program yielded a recent paper by Mercer [12] in the response of multi-
supported beams to a random pressure field.

Tack and Lambert [13] derived general expressions for the response of
plates and bars to boundary layer turbulence.

A recent paper by White [14] used an experimentally based expression
for the turbulent pressure cross spectral density to predirt the response and
consequent sound radiation from a rectangular flat plate. The response of the
plate and the acoustic radiation are averaged over frequency bands so that the
details of the response are bypassed, and only the effect of such gross param-
eters as panel modal density and boundary layer characteristics are investi-
gated. White obtains very good agreement between theory and experiment
within these assumptions,

Bull et al. [15], as a part of the University of Southampton effort, calcu-
lated the displacement spectral density of flat plates due to turbulent excitation,
They used a normal mode approach to the plate problem and an experimentally
based expression for the turbulent pressure correlation as input. Collier [16],
using an approximation to the turbulent pressure correlation function, calcu-
lated the plate acceleration correlation functions and acoustic pressure field
radiated from the plate into an infinite fluid spacz at rest.

Pretlove [1 7] presents the theory, from a normal mode approach, for
calculating the displacement spectral density of a simply supported panel,
backed by a rectangular closed cavity. In the forcing function for the plate, he

makes provision for both the turbulent pressure and the resultant acoustic

- oo R B L ay



presrure in the cavity, He does not, however, solve this problem for any
particular model of the turbulent pressure. From his theory, however, he
states that the effect of the backing cavity is most severe in the cases of thin

panels covering shallow cavities.

3.1, 2 Experimental Studies in Flow Induced Noise

Few experimental studies of flow induced noise appear in the literature,
El Baroudi, Ludwig, and Ribner [18] experimentally investigated the displace-
ment correlation properties of a flow excited plate and the resultant total sound
power radiated into a reverberant room. In a related effort, el Baroudi [19]
measured the displacement correlation properties and displacement spectral
density of thin flat plates excited by turbulent boundary layers.

Bull et al. [15] measured the displacement spectra of thin flat plates due
to turbulent excitation, The plates were effectively mounted in a fixed manner,
and the experimental results were compared to the theoretically predicted
spectra for the simply supported case using an experimentally based model for
pressure correlation as input, As might be expected, agreement between
theoretical and experimental results was not good.

Maestrello [20] measured the sound power spectra radiated into a
reverberation chamber from turbulence-excited plates. In another paper ['21]
he measured the plate displacement correlation function for turbulence excited

plates.

3.1.3 Theoretical Studies of Flow Noise

Flow noise, as used in this study, refers to the wall pressure fluctuations




produced by a turbulent boundary layer. The mathematical theory of pressure
fluctuations in homogeneous, isotropic turbulence is well developed [22, 23,
24, 25, 26], However, because of its extreme complexity, the problem of
pressure fluctuations produced by a turbulent boundary layer has not been
treated extensively,

Kraichnan [27, 28], Lilley and Hodgson [29), and Sternberg [30] have
made theoretical studies aimed at computing the mean of the turbulent wall
presswre, but the space-time correlation properties (or their Fourier trans-
form) are required in order to treat flow induced noise problems.

Two attempts have been made to predict the correlation properties of
turbulent wall pressure fluctuations. Gardner [31], starting with the Navier-
Stokes equations, attempted to predict the wall pressure correlation by
assuming forms for the various velocity correlations occurring in his expres-
sions, His results were in sharp disagreement with experiment, White [32].
claiming that Gardner's approach was sound and that mathematical errors
were the cause of the discrepancy between theory and experiment, attacked the
same problem through Gardner's approach. White calculated the turbulent
wall pressure cross correlation function, lateral and longitudinal cross spec-
tral densities, and convection velocity, White's predictions agree reasonably
well with experiment except in the case of the wall spectral density where
there is a large discrepancy between predir.ted and experimental results,
White shows that the pressure cross spectral density is approximately equal to
the product of the lateral and longitudinal cross spectral densities, which

bears out a previous empiric¢al prediction by Corcos [33].



3.1.4 Experimental Studies in ¥low Noise

The first reliable measurements of turbulent boundary layer pressure
statistics were made by Willmarth [34] in 1956, Harrison [9] in 1958 pub-
lished the first measurements of the wall pressure cross spectral density,
Since thege measurements, many experimenters have measured the turbulent
wall pressure cross spectral density and correlation functions. Extensive
bibliographies of this work are presented by White [35] and Bull et al. [15],
and only selected references will be presented in this study,

Bakewell et al. [36] published extensive data of mean square pressure,
pressure spectral densities, and pressure correlation functions from experi-
ments in a 3-1/2-inch-diameter turbulent air flow facility,

Using both theoretical arguments and data obtained at the Ordnance
Research Laboratory at Pennsylvania State University, Skudrzyk and Haddle
[37] derived the following semi-empirical expression for the turbulent wall

pressure spectrum as measured with very small transducers:

U
®(w) =0.75 x 107*a? p] U} 8" w g 1.25(»?87°

2U(J U (3‘ 1)
MR, w>1.256 —=
5

D) = 1.5 x 107 a2
(1)38‘2

where a is a constant which takes on different values for different fluids,

For water,

and for air, 3.2)

Although this expression is not in exact agreement with experimental data

in shape because of the discontinuous nature of (3.1), it shows good agreement
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with experimental data in both amplitude and shape at frequencies above the

discontinuity and a reasonable approximation to the amplitude at frequencies
below the discontinuity, The agreement between (3. 1) and experiment. ! data
will be discussed further in Section 4.1,

Willmarth and Wooldridge [38] reported further measurements in 1962,
designed to provide more detailed statistical propertics of the wall pressure
fields, About this same time, Serafini [39] published new data of wall pres-
sure measurements,

Corcos [33, 40] , using the data of Willmarth, Bakewell, and Serafini,
stated that the turbulent wall pressure cross spectral density function could be

expressed as

Spp(f-"] w) = (b(u,)A(:_;_{)B(:;_Z)e‘““’f Uc? | (3.3)

4 <

Plots of A(wé/U.) and B(wn/U.) are also included in Corcos' work and
are reproduced in Figures 2 and 3. Corcos went on to predict the error re-
sulting from the measurement of the turbulent wall pressure field with finite-
size transducers and presented a means of correcting measurements for this
error,

Researchers at the University of Southampton have made extensive meas-
urements of the turbulent wall pressure statistics. The resulting reports are
summarized in the 1963 report by Bull et al.[15]. Willmarth and Roos [41],
incorporating Bull's data, reattacked the problem of resolution by finite-size
transducers on the basis that Corcos' similarity form for the cross spectral

density, equation (3.3), although accurate over a wide frequency range, failed
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to provide accurate hydrophone size corrections at high frequencies, Will-
marth indicates that the reason for this limitution is that (3. 3) is inaccurate at
small spacial reparations. However, as Willmarth points cut, wall pressure
correlation measurements at small spacial separations have never been made
because of experimental difficulties. He therefore does not propose an alter-
nate form to (3. 3).

Some of the data mentioned above havebeen obtained at the walls of circu-
lar pipes and others at the surfaces of flat plates., The lack of any significant
difference between the pressure spectra obtained in both cases is indicated in
a recent work by Schloemer [42], who measured turbulent wall pressure dlata

in the presence of favorable and adverse pressure gradients,



v
THEORETICAL DEVELOPMENT

The model treated in this analysis was a simply supported, rectangular,
flat plate mounted in an infinite rigid baffle and backed by a rectangular cavity
with rigid walls, Fluid flows over the top of the rigid baffle and plate, and the
cavity is filled with an acoustic fluid, A graphic representation of this model
is presented in Figure 1,

In order to determine the acoustic pressure field within the cavity, it
would ordinarily be necessary to determine the vibration of the plate due to the
combined turbulent and cavity acoustic pressure excitations. The cavity acous-
tic phase velocity at the plate would then be equated to the plate velocity, re-
sulting in an integral equation for the acoustic velocity potential., The various
constants resulting from the solution of this integral equation would be deter-
mined by the remaining boundary conditions, which require that the acoustic
phase velocity be zero on the rigid cavity walls, Pretlove [17] used an
approach similar to the above in computing the plate displacement spectral
density for a model identical to that described above. However, Pretlove
discovered that the cavity acoustic pressure had little effect on the plate dis-
placement spectral density except in cases of thin plates covering shallow
cavities, For submarine applications, the plates covering the cavities are

not thin and, therefore, in accordance with Pretlove's results, it is assumed

12
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in this analysis that the cavity acoustic pressure provides negligible excita-
tion to the plate; that is, the only forces exciting plate vibrations are those
associated with the turbulent boundary layer pressure fluctuations,

The above assumption simplifies the problem considerably. To compute
the cavity acoustic pressure field, it is now merely necessary to compute the
plate vibration velocity due to the turbulent boundary layer excitation and to
equate this result to the cavity acoustic phase velocity at the plate. The re-
sulting acoustic velocity potential must also satisfy the zero velocity condition
at the rigid walls, Hence, it is only necessary to determine a model for the
turbulent boundary layer pressure statistics in order to solve the above
problem.

Since the turbulent boundary layer pressure is a random phenomenon,
the cavity acoustic pressure resulting from the boundary layer excitation of
the plate will also be a random phenomenon, Random processes are usually
treated in terms of their space-time correlations or in terms of their spect ral
properties in the frequency domain. Collier's recent work [16] on the vibra-
tion and acoustic radiation of turbulence excited plates indicated certain com-
putational difficulties arising from treatment of the statistical properties in
the time domain., Therefore, in this analysis, random variables will be

described in terms of their spectral properties in the frequency domain,

4,1 Mathematical Model of the Turbulent Wall Pressure Cross Spectral Density

The mathematical model of the turbulent wall pressure cross spectral

density selected for use in this analysis was that of Corcos[33], which is
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given by (3. 3) and is repeated here for reference.

Spp( f!"c(ﬂ) = ‘b((u) A(;_’JE) B(in—")c-“wf ’UC‘, (30 3)

U
c

Corcos' model was selected for two reasons, First, its mathematical
form is such that space variables are scparated, thereby ecasing computational
difficulties. Secondly, Corcos' model was used to theoretically predict trans-
ducer size corrections which agree well with measurements over a wide range
of frequencies. Thus, subject to the limitation at high frequencies discussed
in Section 3. 1.4, Corcos' model of the turbulent wall pressure cross spectral
density provided a realistic and mathematically attractive model for this
analysis.

Before proceeding further, it is necessary to discuss the limitations in
applicability of equation (3.3). Since £ and n are relative coordinates,
equation (3. 3) tacitly assumes homogeneous stationary turbulence. Therefore,
Corcos' model of the cross spectral density is strictly applicable only to the
case of a flow having zero pressure gradient and constant boundary layer
thickness. However, equation (3. 3) can be used with good accuracy for turbu-
lent flows in which slow boundary layer growth and small pressure gradients
occur, In this analysis, the flow is assumed to have the following charac-
teristics:

a, constant boundary layer thickness over the plate,

b. zero pressure gradient,

Corcos [33] also shows that the convection velocity is a function of the Strouhal

Number 8" U,. This relationship is shown in Figure 4. Since the variation



of the convection velocity is not large over a wide range of Strouhal Number,
it is further assumed in this analysis that the convection velocity is a constant
given by

U, =0.65U_. (4.1)

Figures 2 and 3 present curve fits to experimental data for the functions
Alwé/U) and B(wn/U.) contained in (3.3). From these figures, the follow-
ing expressions have been selected to represent the A and B functions based

on a balance of curve fit and mathematical simplicity:

ACJ;{)H-&H*IW“C: (4.2)
and ‘
B(Sg)=e-o.7'uwvcl. (4.3)

Note that equation (4. 2) fits the measured value of A(wé/U) very well,
whereas equation (4. 3) sacrifices some accuracy in fitting the experimental
data in favor of mathematical simplicity. The expression

R -
w

¢ l+l.4-—r’
8]

<

provides a much better fit to the experimental data than does equation (4. 3),
but its use in the analysis to follow greatly increased the mathematical com-
plexity. Hence, equation (4, 3) was selected to represent B(wn/U ).

It remains to select an expression for ®(w) in equation (3. 3) in order to
completely specify the mathematical form of the turbulent wall pressure cross
spectral density. Lilley and Hodgson [29], and Skudrzyk and Haddle [37] have
proposed expressions designed to describe the turbulent wall pressure spectral

density, The agreement of the Skudrzyk and Haddle expression with experi-
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mental results is much better than the Lilley and Hodgson expression, Fur-
ther, the mathematical form of the Skudrzyk and Haddle model is quite simple,
Hence, the Skudrzyk and Haddle expression for the turbulent wall pressure
spectral density (equations (3.1) and (3. 2)) was used in this model and is re-

peated here for reference:

U
d(w) =0.75 ~ 10 a? pj UL & w £ 1.256 =
5 3. 1)
ZUo U
D)= 1.6 « 1075 a2 2 w> 1.2 —
wl5"? 5

where

a 1.0 for water

3.0 for air .

a

Figure 5 presents a comparison of the experimental data of Bakewell [36] ,
Schloemer [42], and Bull [15] with the Skudrzyk and Haddle model. The data
are jfor air rather than water because of the greater availability of air data,
The agreement between the experimental data and the Skudrzyk and Haddle
expression is poor at low non-dimensional frequencies but improves consid-
erably above the cutoff frequency., Althoug: the data of Schloemer and Bull
were obtained on flat plates and those of Bakewell in a pipe flow facility, the
Skudrzyk and Haddle non-dimensional form brings these data into excellent
agreement. It may therefore be assumed that the parametric form of equa-
tion (3. 1) is valid, but the values of the constants and cutoff frequency could
be considerably improved. For this analysis, however. equation (3.1) was
used in the original form to describe the turbulent wall pressure spectral
density.

Combining equations (3. 3), (4.2), (4.3), and (3.1), the turbulent wall
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pressure cross spectral density may be described by

S, ) = 075 |0"u’p"U‘:5‘ [c’”"” wE l‘clt-0,7|wv7,’l1t|]c-i(w.{ U

UO
w$1.2% — »
5
PH
S (£ = 13 x 100 a? =2 [eomsloevdJorlon/ud] guwe vo
44 (“\5‘2 U
w>1,2% - .
s

(4.4)
Equation (4. 4) is the mathematical model of the turbulent wall pressure cross
spectral density used in the analysis to follow. For convenience of reference,
the assumptions pertinent to equation (4.4) are summarized as follows:
a. constant boundary layer thickness over the plate,

b. small pressure gradients,

It is further assumed that the ratio of the convection velocity to the free

stream velocity is constant as presented in equation (4. 1),

4,2 Development of the Plate Velocity Cross Spectral Density

4,2,1 Plate Velocity Response to a Deterministic Pressure
The differential equation governing the displacement of the plate due to

the turbulent boundary layer pressure excitation on the plate surface is

4 dw ’w
Dvw+rx¢pﬁ=p'(x.y,t). (4.5)

where
D is the flexural rigidity,

t is the effective damping coefficient per unit area, and

p is the effective mass per unit arca.

The terms "effective mass'" and "effective damping' as used above denotes
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the mass and damping due to the combined effect of the plate and water. In
this treatment, for lack of detailed informution concerning the effect of the
water on mass and damping, the effective mass and the effective damping
coefficient are assumed to be constants, It is further tacitly assumed in
equation (4. 5) that the turbulent pressure field is not affected by the plate
motion. The effects of cavity acoustic pressure on the plate and neglected,
and the forcing function is only the turbulent pressure.

The solution to equation (4. 5) for any arbitrary deterministic pressure
field can be determined by a supeiposition of the normal modes of vibration

of the corresponding free-undamped plate, governed by

DVA‘W ‘o -;T -0, (4. 6)
de*

The solutions to equation (4. 6) satisfying the simply supported edge con-

ditions shown in Figure 1 are given by

w(x,y,0) =a_ (x,y)sinw_t, 4.7)

where the mode shapes and corresponding natural frequencies are given by

mry  nnx
sin

sin

a  (x.y)=

(4.8)

Vv ab

RORC)

The normal modes, «_ . form a complete set of orthonormal functions:

that is,

b ra
J’ J umn(x.y)um(x.y)dx dy =5mq5m. (4.10)
(A 1]
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It is now assumed that the solution to equation (4. 5), for any determinis-
tic pressure, can he written as a sum of the normal modes, each multiplied by

a function of time: that is,

~

wix,y.t) = z um"(x,y)Tm"(l), “4.11;
-

n =l
where T isto be determined,
Substituting (4.11) into (4. 5) and utilizing (4.10), one finds that T, (0)

must satisfy

diT dT > ,e
d':- 45 d:' + o»:.'l'-. -%IL p‘(x.y,t) a..(x,y)dxdy . 4.12)

At this point, it is convenient to solve equation (4. 5) by means of equa-

tions (4.11) and (4. 12) for two special cases. For the first case, let

P(x.y,0) =8(x-x) 5y ~y)e'“", (4.13)

that is, a concentrated load applied at (z',y’) varying sinusoidally in time.

Assume the solution can be written as

w(z,y,t) = H(x,x'y,y, ) e!®". 4.14)

Equation (4. 14) is the defining statement for H(x,x’,y,y,w), which is termed
the complex frequency response. Solution of (4.12) with p (x,y,r) defined by

(4. 13) results in the following solution via (4, 11):

: ) I(x'y) ) n("’y’) lwe

SRS -Zal (w? - itw ¢
ael H w..-w ¢ T

Hence, comparison of (4.15) and (4. 14) yields the following solution for the

(4. 15)
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complex frequency response:
=, 0a0(T.y)0na(x'y’
Hix,x'y .y’ @) 1 Gnn'X,Y)0na " y) ) 4. 16)
::: (m:. ~0d) ¢ 22
As the second special case, consider the impulsive loading at (x’,y")
occurring at time t’:
P(x,y,0) = 8(x~x)8(y -y) 8(t -t") (4.17)
and, define:
6 =t-¢t
wix,y,t) 6>0 @.18)

h(‘v”vay’oO) ={
0 6<0 .

The solution of equation (4.12), when p 1s as given by (4.17), is

T, (0= e""““[cl sin Jw:. -(L)I 6+C, t:ost2 -(—'—)z 0]. 4.19)
I 20 \2u

The constants C, and C, may be evaluated by applying initial conditions

appropriate to an impulsive loading, with the following result:

e-¢8/2u 5 a
T'“(t)-_—z- a-u(l',y') sin Yo, - 2—“ 9 . (4. 20)

nyo? -(=
mn 2“

Hence, from (4,11) and (4. 18)

10/ & ag,(x.y)aualr’y)
h(x.x'y .y 0) =& $ %aalXY)aan(xy) w:n_(L)lo 4. 21)

' J_(_z_“)’

By use of (4. 21) andthe principal of superposition for linear systems, the

£
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plate response for any deterministic pressure excitation may be constructed.
This {8 accomplished by considering the excitation pressure field to be the
superposition (or summation) of an infinite number of impulses in time and
space. Hence, for any deterministic pressure field, the response may be

written:

t { ]
w(z,y,t)= 1 fi p.(x'.y'.t')h(x x,y,y,0)de dy’ de’. (4. 22)
@,
However, as 6 -t-t’, (4, 22) may be rewritten as

L d}
'(‘ Y yt) - l Li’p'(!',y',l'a)h(x ,l',y 'y:' o)d‘:dy:do (4. 23)

In the acoustic problem, the velocity of the plate (rather than the dis-

placement) will be required for the boundary value. Hence, defining

In(x,x’y.y’, 0) (4.24)

{x,x'\y,y’,0)= 7

as the velocity response of the piate to an impulsive loading, from (4,24) and

(4. 21) the velocity response is found to be

e <0/ = a JTy)ag (x°y) e \
‘v v 0) _e__-._ -[—
{(x,x"yy,y’, 6) U Z - ‘J Zp ost:n (2#) 6

ms]
s =l

6>0
(4. 25)
Defining the velocity field of the plate as
dw(z,y,t ‘ (4. 26)

¢(x,y,t) = P
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one may express the velocity response of the plate to a deterministic pressure

excitation via (4. 25) and (4. 26) as

B(x,y,0) S.s:fp,(l'.y'.t-o) {x.x'yy’, 0)dx' dy’dd. (4.27)
]

4,2,2 Plate Velocity Cross Correlation

The plate velocity cross correlation is defined as

Qug (51157 Y ot ypty) = E [dlxpy 1) dlx ey pe))] (4.28)
and the turbulent wall pressure cross correlation as
Qpp (’lvxryloy 2v'lvt2) - E[Pl(!l'yptl)P((' 2')' zvtz)] ] (4' 29)

where E denotes the ensemble average,

From (4.27) and (4. 28),

b
Quo (X Xy Y ptyty) = E [Fﬂ £rrP.(x'pY‘l"l =0 )p(xpy pty=0)
0JoJoJoJo Jo

((! 1 vl'l Yy .)"l ’ ol) 4('2 vl'z Y, rY;o 02) d ()ld ozdl', d)"l dx'zdy'z] .

(4. 30)
However, the plate velocity impulse response is not a random quantity; hence
the ensemble average applies only to the turbulent pressure field. Thus, from

(4.30) and (4. 29), the plate velocity cross correlation may be written as

b
Qpe (XpXpy py ptppty) = S‘YS ﬂ‘r Qpp (27:35,y7 .54, =6,.t,-6)
oJoJoJoJo Jo

{(xy %y, 07,00 48,05y, 0,)d0,d0,dx) dy) dxydy) -

(4.31)
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From Section 4, 1, the turbulent boundary layer pressure is assumed to
be a homogeneous, stationary random process. Therefore, the turbulent
pressure cross correlation is a function of the difference between the spacial
and temporal coordinates rather than the coordinates themselves. Hence,

(4. 31) may be written:

b b L]
Q¢¢(l|-lz'Y1oYz.7) - jﬂrjjj rQ'p ({,,”o'7+ol_02)4(‘“‘;”'”']'0')
0/0 0J0

{(x5,%3.y,,y3,0,)d6,d6,dx| dy’ dsdy; .

(4.32)

4,2,3 Plate Velocity Cross Spectral Density
The cross spectral density is defined as the Fourier Transform of the
cross-correlation function, Hence, the plate velocity cross spectral density

is defined as

(" clw
SPPICITLI A0 PR -EX-Q¢¢(’I"2-Y1'Y2' T)e T dT. (4.33)

Multiplying and dividing equation (4.32) by ¢ “(“1-%) and substituting into
(4. 33) gives the following expression for the plate velocity cross spectral

density :

b bprs o
PP PO A0 P -ifiLs-g.{ L S Q”(f‘,q’,'r+0l—02)e"“’(”6"02)d('r+ 01-02)}
0J0 ' \/Zn J-oe a

Cxyxiy gy 'ol)"lwl (x;x5.,,5%. 6 el d6,d6,dx dy dxdy;

(4. 34)
However, the term in brackets is easily recognized as Spp(ﬁ', 7', w); there-

fore, (4.34) may be rewritten:
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YdTd)
s@é('l "z'yl'yZ'w) ¥ ELL&) SPP(f"""w)r ‘(‘l v"| .Ylvyll.ol)e""ei dol
0

=~ . . “wh Y.
S((lznlz.yz.yz.oz)ew2d02dxldyldx2dy2.
0

(1. 35)
Since {(x,x,y.y,w) i8s zero for 6 <0, the semi-infinite limits in 0, and 0,

may be replaced by infinite limits, It is easily shown that

s ((xzut’szpy’zoez)c.lwozdaz 'iw“(’zv';v)'2 'y'z'w) (4' 36)
and that

S {(!| "‘l .)’l.y'l.ol)clwel dol - -imH(ll.x'I ,yl,y'l,-w) . (4.37)
Hence,

Sealty XYy ) = .1:](11: W8 5o (£ @ H(x X1y 1y} )
H(x,.1%.5,07500) dr) dy\dsfay),
(4. 38)
where H(x,x",y,y", @) is as defined in equation (4, 16),
The expression for Sm,(ﬁ'. n’,w) was presented in equation (4.4). Com-

bination of (4.4), (4.38), and (4. 16) results in

amn(xl 2 l) “qs('z ’y2)

Ew -w%-EﬁBwl-w%+Eq
mn [ qs 1

brarbp. PR ’o PR
{ ijjj &0 1IN 13- x{]) il Uelage x () -0.7w /UMy 3=y i)
1o/ 0J0,/0

INCRATNER AL A

Sgol® Xy 1y ) = Ao’ Z Z

Uo
1



"mn(‘l "'1)"q-('z 'y 2)

)"':i

') mz=1 q=1 m )
2] s=] (m = (”2) = ][u = (uz) + ol
mn K u

ijjjﬂ 08U a3 x (D il Uekag-a 0.7 Uiy 3oy iy

a_ (x} 'y'l)aq‘(x'z wyy) dxdy dx'zdy'z}

'tw(‘l T EN A ,yz,m) - 240! (

Uo
> 1,25 —
&

(4. 39)

where

A=0"5%x10"%a plb“B (4. 40)

Equation (4. 39) may be rewritten by recalling the definition of «_ (x,y) from

equation (4. 8) and defining

On o0 . mnrx’ nx
l| =s.sl c'o.“‘(mc‘”l'z'"hr'i(“ UeKr2- 1) giq : sin il dl;d!'z (4-41)
ma - JoJo
and
beb e nry’ sy’ 4,
I = 07 Ldllyv2 v sin L sin 2dy' dy’, : (4.42)
Zns b b 1772
o mrx, nmy, qmx, smy,
16A0? & & sin : sin B sin . sin B
S¢¢(xl'x2'yl'y2'w)= 2 2.2 2 Z . m
p'a b® m=1 q=1 2 2) ll’m ( 2 2) 1t q ns
n=1s=1 @ -w’) - # mq.-m +
Uo
W l.ZS()—.'
= b
2 SRR 1 m”xlsin nﬂylsinq"x2 sin AL
00 fuN &S & M Ta b a b
Spalx, X,y ¥, —f— I, 1
(X XY Yy w) = “zazbz(U') mzzl ?;1 i) ) it 2
° n=1 s=1 (uz —mz) D —> (m - )0 ——
mn u qs Hn

UO
w > 1.256 —
s

(4.43)

Lt e B i U SN PP Rt - { 3
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It remains to evaluate 1, and I, inorder to complete the solution
mq ns

for the plate velocity case spectral density,

From (4.41), 1, is defined as

mq

I '_i:j. c.o.““wc’(l'z"'ihe'“wlu‘)"i'"') sin 2 sin ikl dx;dx’, . (4.41)
1 a a 1772 *
mq N

Note that the integrand depends on the absolute value of x) - x|, and thus the

integration must be performed over limits as shown in Figure 6, The appro-

priate values of the term containing the absolute value for each area of inte-

gration are also presented in this figure., Thus, by utilizing Figure 6, equa-

tion (4. 41) becomes

5 arsx’ 4 , nx’
I ef etwmvoous-nsg 2" U iy T 02 g L
l.‘ Y a 2 1

2 qrx), 2 ; mrx|
+-[ e'(“/Ug’(O.ll’#')lz sin £ { e(wlut)(o'"””.l sin dxfl} dx'z .
a a

(4. 44)
The above integral may easily be evaluated from standard integral tables, and

after extensive, but routine, simplification, (4,44)becomes

1, = 5_.1.0066 =R -0.46
Taq - q{ i Uc - €08 (v- 3m
2 _ym(ie 2
+(1-8, ]nqn ep2(-ne -1l [R_e'Ya-R e'“’"']+2mq,7 cos(v_+v.)
q 2 m q 2 q m
a [(m"z (q,, 2] a
2/ \a
mq n’ 0. 113 (wa/Ug) -i(we/
L e0 ()L el(wa/Ue +vqevg) | (L)) i(u8/Ug ¢+ vgevp)]h,
2
a
(4. 45)
where 5
ﬁ. 2 4
mn

(4 <

. -Vl\r)z o087 (U_u_))] + o.osn(l,ﬁ) : (4. 46)



27

N (R R
-
T [EY e ()]
)

T T e (@]

and 5mq is the Kronecker delta,

(4.48)

(4.49)

From (4.42), 1, Iis defined:

ns

b b o, e any’ sny’
1 - &0 Uc)d.z n\) &b lsin 2 dy’ dy’, - (4.42)
znl b b | 2

Again, because of the appearance of the absolute value of the difference of the
variables of integration in the integrand, the integration must be performed
over limits as shown in Figure 7. By applying arguments similar to those

used in calculating l,m one can show that
q

STErETEae AR (S AT

U
c

5
s

2
U IS VT ! PR (G (-n-le-O-”wwvcﬂz.

b? b
(4.50)
Here again, 5 _ is the Kronecker delta. It shouldbe noted that the Kronecker
delta was used in equations (4. 45) and (4. 50) to conserve space rather than
writing separate expressions for m=q and m # q in (4, 45) and, similarly, for
n=s and n#s in (4,50). Hence, in order that no confusion arise in evaluating

I and 1, , the effect of the Kronecker delta should be considered first.
n

mq




28

Combining (4. 43), (4.45), and (4.50), one finds

mnx, amy, qmx,  smy,

16Aw? = & a b b
Ses(®) X0y Y0 = Zl 2: - - _
HE I -, o 2]

_'_{5 1.0066 22 R cos (11 - 0.463n)
R R mq U m m
e q <
2 2
mqr’ ((_1)™ (—1)9 - . g 2o,
v -5 ) 97" {(-D™ (-1) l‘lR eiva - Rge'tm L ‘)

)

T o
mqn®

- - e Ued T PLE Verlgtim', (=])9eM- lcovqotm\‘}
a-

| : I ORTS-IP I PY (R T LA WY
[(ow _) (M)][G) N (i_")] Ve U/ \*/ \*

U b (¢ b
c <

2 2
L AR (U M P = R (CTV A (-n'le'“-"“""'r‘]‘
b* b

U

w £ 1.256 =

mnxl ) ﬂ"yl ) qﬂlz Sﬂy2

. oo o . .
32“‘“2 (“5 ~ ~ sin a sin b sin 2 sin b
Sem Xy e = (_:) 2 Z

2 sz U : i
p-a 8 m=] q=3| 2 2) Itw ( 2 2) (1 {"
n=l szl (o2l € -T mq‘—m + T

——{3 10066 22 R cos (1 = 0.463m)
mq l' m m

m q ¢

qun2

mqT (D™ (=19 - HiR evacRoetimij
N T

( o) s al
e
mqrr"

e PO UL LI CAN TP LR Lesigrimd . (o])9et(+0 l'c"'q"m‘l}

cos ("q i)

: ! - - o.asi'bﬁns 2fo- 2} (25 (2
v b v b

c

+

b* 2

LTI L TN R ":". G- (4)’1:“’”‘“’“'4"

Uo
w> 1,25 —
5

(4.51)
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By defining

(I (4.52)

[ {7]

A =tant — . (4. 53)

2 & 04 2
6 =035®s l2for 2\ 22 Y] 211 -5, M- (-D* -]
ns Uc ns Uc b b bZ ns
(4. 54)

2 '
, 8T {2 —(-D" (-n*le"’-"‘"“c’} :
b2

2 2
P =fo7 =)+ 1‘.’1> . (4. 55)
" ( Uc) (b
2 2
IR (R ;(‘_”) . (4. 56)
U, b
2
T, - ‘Fmgm-ml)’ +(£“_' (4.57)
u

2
T, = ‘Fq - 2% +(T) (4.58)

v ={5 10066 2 R cos (1 - 0.463m)
mq U m m
C

mnqs

qun2

m ﬂ2 m q_ . :
y @97 (=07 (D 1I[R e - Rgeml s

e :

2
mqn e.o.lli(mn/Uc) [(_l)m ei(w'/'Uc’Vq”’m‘ A (_|)q¢‘““"/UC”'qu‘]} ei()\mn- qu) ,

82

)

cos lir vy

¢ (1 -

(4.59)
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equation (4,51) may be simplified further, The resulting expression for the

plate velocity cross spectral density is given by
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(4. 60)

4, 2,4 Plate Velocity Spectral Density

The power spectrum of the plate velocity, @,(x,y,w), may be defined

in terms of the plate velocity cross spectral density as follows:

0¢(ll.ylow)‘S¢¢(!l.!l.)'lny|.w)- (4’61)
Hence. from (4, 60)
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The plate velocity power spectral density should be a real, even function,
Hence, upon summation equation (4. 62) must be real in order that it be a valid
solution for the plate velocity spectral density. Substituting for /2. from

U
(4.59) and rearranging, (4.62) for < 1.2% ?‘3 may be rewritten as
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Since G__ is a symmetrical matrix, that is,

G . =G (4. 64)

v
ns sn

the first summation group may be rewritten as
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By applying similar arguments to the last three sumraation groups, one can

show that (4. 62) becomes
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